3A09

## 有機導体 TMTTF 系のパルス ESR による スピンダイナミクス研究

(分子研<sup>1</sup>・総研大<sup>2</sup>) 古川貢<sup>1,2</sup>・中村敏和<sup>1,2</sup>

【序】

現在までに,TMTTF(図 1)は数多くの研究者によって調べられ,その基本的性質は 明らかにされてきた.<sup>1</sup>この分子では,カウンターアニオンと塩をつくり(TMTTF<sup>0.5+</sup>)<sub>2</sub>X という電子構造を持ち,その結果,2つのTMTTF上の不対電子が伝導性・磁性を担 う.そして,カウンターアニオンの種類,温度によりさまざまな電子状態をもつこと が知られており,Jerome らによって相図<sup>2</sup>が報告されている.中でも PF<sub>6</sub>塩では,常 磁性相と spin-Peierls 相の間に電荷秩序相が存在し,その電荷整列パターンは一次元鎖 方向に-o-O-o-となることが明らかにされた.この電荷秩序相が spin-Peierls 基底状 態に転移する場合,どのような電荷配列を取るのか興味深い.スピン自由度の変化を 伴う相転移では,電子スピンの緩和時間を調べることで,転移による起源に関する直 接的な情報を得ることができる.そこで,本研究では,パルス ESR 法による電子ス ピンの緩和時間測定により,相転移点近傍でのスピンダイナミクスの解明を行った. 上述のように,パルス ESR 法は,スピンダイナミクスの直接的な情報を引き出せ

L述のように, ハルス ESR が る強力な実験手法である.しか しながら,一般に常磁性固体で は,緩和時間がパルス ESR シス テムの測定限界(数十 ns)よりも 速くなるために,測定が困難と 思われてきた.ところが, TMTTF 系のような軽元素で構 成される有機低次元電子系なら ば比較的緩和時間が遅くなるこ とが期待でき測定できる可能性 がある.そこで,モット絶縁体 相から spin-Peierls 転移を起こす MEM(TCNQ)<sub>2</sub> (図 1)も測定し, TMTTF 系のスピンダイナミク スと比較する.



## 【実験】

緩和時間測定には Bruker E680 スペクトロメータを使用した.測定温度は OXFORD CF931 クライオスタット, ITC503 温度コントローラーにて制御した.緩和時間測定 には,一般的に常磁性固体の場合には,スピン-スピン緩和時間  $T_2$  は装置の測定限 界より充分に早いために,電子スピンエコーを検出することは極めて困難である.したがって,Free Induction Decay (FID)を用いて, inversion recovery 法( $\pi$  -  $\tau$  -  $\pi$ /2)によ り 50 K 以下の温度領域で  $T_1$ を測定した.MEM(TCNQ)<sub>2</sub>, (TMTTF)<sub>2</sub>PF<sub>6</sub>共に測定は単 結晶で行い,緩和時間の温度依存性,および角度依存性を測定した.

## 【結果と考察】

図 2 に MEM(TCNQ)<sub>2</sub>, (TMTTF)<sub>2</sub>PF<sub>6</sub>に おける  $T_1$ の温度依存性を示した. MEM(TCNQ)<sub>2</sub>では, すべての温度領域で ほぼ等方的な  $T_1$ が観測されている.その 温度に対する挙動は,転移温度( $T_{sP} = 18$  K) 以上では,温度減少と共に緩やかに緩和時 間の増大が観測されるが,  $T_{sP}$ 以上では急 激な増大が観測された.この挙動は $T_{sP}$ で, spin-Peierls 転移に伴うスピンギャップの 生成過程を示している.

一方, (TMTTF)<sub>2</sub>PF<sub>6</sub>では, 実験結果から 22 K - 40K (温度領域 A), 12K - 22 K (温度 領域 B), 12K 以下 (温度領域 C)の 3 つの 温度領域に分けることができるように考 えられる.領域 A では,常磁性領域であ リ, すべての方向で T<sub>1</sub>は温度減少と共に 緩やかに増大している.また, c\*方向の  $T_1$ のみが大きな値を示しておりスピン相 関が異方的であることを示している 領域 B では, c\*方向の T<sub>1</sub> が急激に減少し等方 的に移行しており,その後,領域 C で, すべての方向での T1の上昇が観測された. 領域 C における(TMTTF)<sub>2</sub>PF<sub>6</sub>の挙動は MEM(TCNQ)2における, T<sub>sP</sub>以下の挙動に 対応するもので、スピン消失の過程を示し ていると考えられる .(TMTTF)2PF6の最大 の特徴は相転移点直上で、電荷秩序相が存



の特徴は相転移点直上で、電荷秩序相が存 図 2. (a) MEM(TCNQ)<sub>2</sub>と(b) (TMTTF)<sub>2</sub>PF<sub>6</sub>塩 在することである.領域 B で観測された における T<sub>1</sub>の温度依存性.

異方性の消失過程は、(TMTTF)<sub>2</sub>PF<sub>6</sub>の spin-Peierls 転移において、スピンギャップ生成 される過程で電荷秩序相の電子密度の疎密も解消されることを示唆している.実際最 近の<sup>13</sup>C NMR の結果から、4K においては TMTTF 分子の電荷が等価になっているこ とが分かっている、<sup>3</sup>領域 B の異常は電荷秩序相に起因する特異なスピンダイナミク スである、

当日は,角度依存性の結果も合わせ,相転移点近傍のスピンダイナミクスならびに 電荷配列について議論する予定である.

<sup>&</sup>lt;sup>1</sup> T. Ishiguro, K. Yamaji, and G. Saito, *Organic Superconductors*, Springer-Verlag, Berlin, 1998 and the references cited therein.

<sup>&</sup>lt;sup>2</sup> D. Jerome, *Science* **252**, 1509(1991).

<sup>&</sup>lt;sup>3</sup> T. Nakamura, K. Furukawa, and T. Hara, J. Phys. Soc. Jpn. 76, 064715 (2007).