2E13

含 Fe, Co, Ni ラジカルにおける High-spin/Low-spin 状態の電子構造と物性

(広島大院理・産総研^a、NECナノエレ研^b、産総研^c、アドバンスソフト・東大生研^d) ○平野恒夫^a、友成六美^b、長嶋雲兵^c、田中 皓^d

[要旨]

FeH,¹⁾ FeCO, CoH,²⁾ CoCN,³⁾ NiCNにおける 電子構造を多配置のab Initio分子軌道法で調べた ところ、これらのラジカルのHigh-spin/Low-spin状 態の電子構造は、3d₀と 4s軌道からなる 2 個の混成 軌道への電子の分布の違いとして記述されるので、 これらのラジカルでLow-spin状態が安定になる原 因は、動的な電子相関によることが分かった。ま た、遷移金属-配位子間結合のイオン性、結合の強 さ(結合距離、振動数)などが、動的な電 子相関の効果として理解できることが分 かった。

[計算方法]

計算はいずれもstate-averaged CASSCF で求めた自然軌道(NO)を基に、多配置の SDCI+Davidson correction Q (MR-SDCI+ Q) で行った。FeH¹⁾のFeの基底関数は Koga-Noro らのGTOを、FeCO, CoCN,³⁾ NiCNのFe、CoおよびNiにはRoos ANOを、 CoH²⁾のCoとHにはSTOを用いた。FeHと CoHの計算にはALCHEMY IIを, FeCO, CoCN, NiCNの計算にはMOLPRO2002 を 用いた。FeHとCoHはMR-SDCI+Qに加えて、 MRCPA(4)の計算も行った。 FeCO. CoCN, NiCNでは、Cowan-Griffinの方法で 相対論のエネルギー補正(Erel)を行った。 またNOのエネルギーはNOによるFock様 Matrixの対角項をもって代用した。

[結果]

同じ全角運動量で指定されるHigh-spin とLow-spinの電子状態の違い(CoHで言え

ば、1⁵ Φ とX³ Φ)は、遷移金属原子の 3 d_0 および 4s軌道からなる 2 個の σ 混成軌道への電子の配置 の違いとして記述出来る。ここで考えるFeH, CoH, CoCN, NiCNでは、いずれも、Low-spin状態が 基底配置でHigh-spin状態よりエネルギーが低い。

図1および図2にCoHおよびCoCNの場合のMR-SDCIまたはCASSCFでのNOのエネルギー と、電子配置の様子を示す。CoHでは7σと8σ、CoCNでは11σと12σが、問題のσ軌道である。こ れらの軌道がほぼ同じ高さにあればHigh-spin、両者が離れていればLow-spinになっていることが 分かる。この下がったNOに2個電子が入るLow-spin状態では、ほぼ同じ高さにある2個のNO に1個ずつ電子が配置されるHigh-spin状態に較べて、動的電子相関が大きいことが予想される。

表 1 のCoHの場合、および表 2 のCoCNの場合、いずれも静的電子相関のみのCASSCFでは、

High-spinの方がLow-spinより安定であるにも 係わらず、動的電子相関を考慮した MR-SDCI+Qまたは、MR-SDCI+Q+ E_{rel} では、逆 にLow-spinの方が安定になっている。この動的 電子相関による安定化エネルギーは、CoHでは High-spin状態にくらべてLow-spin状態の方が 33.6 E_h だけ大きくなっている。CoCNでの差は 47.9 E_h である。

動的電子相関が大きいということは、電子間 の動的な反発が大きいということであるから、 その結果より多くの電子が配位子の方へ移行 することになり(Mulliken電荷を参照)、金属 -配位子間の結合に関するイオン性が高くなる ため、基本的にはイオン結合である金属-配位 子間結合は静電引力の増加で強くなる。結果と して、金属-配位子間結合の結合距離は短くな り、その伸縮振動数は高くなる筈である。表1 のCoH、表2のCoCNでは予想通りそうなって いる。FeHについても、かつて田中ら¹⁾は、 Low-spinの方が動的電子相関が強く、電荷の移 行、結合の強さに関しても、まったく同様な傾 向にあることを報告している。したがって、 今回の報告で扱った全ての分子に共通なこれ らの諸性質は、High-spin状態に較べてLow-spin 状態におけるより強い動的電子相関に起因す るものと結論できる。

Table 1	CoH
---------	-----

	Х ³ Ф	⁵ Φ
CASSCF / m <i>E</i> _h	4.8	0.0
MRCPA(4)/ m <i>E</i> _h	0.0	28.8
∆(Dynamical Electron Correlation) / m <i>E</i> h	33.6	
Net Charge (Co)	+0.45	+0.12
Ionicity (Co-H)	:	>
r _e (Со-Н) / Å	1.510	1.632
<i>w</i> ₃ (Co-H) / cm ⁻¹	1925	1756

	CN
--	----

	$ ilde{X}^{3}\Phi$	⁵ Φ
CASSCF / m <i>E</i> _h	33.4	0.0
MR-AQCC + <i>E</i> _{Rel} / m <i>E</i> _h	0.0	14.4
∆(Dynamical Electron Correlation) / m <i>E</i> h	47.9	
Mulliken Charge (Co)	+0.89	+0.63
Ionicity (Co-C)	>	
r _e (Co-C) / Å	1.854	1.997
<i>w</i> ₃(Co-C) / cm⁻¹	544	426

1) K. Tanaka, M. Sekiya, and M. Yoshimine, J. Chem Phys., 115, 4558 (2001).

3) T. Hirano, R. Okuda, U. Nagashima, P. Jensen, J. Chem. Phys., 127, 014303 (2007).

²⁾ M. Tomonari, R. Okuda, U. Nagashima, K. Tanaka, and T. Hirano, J. Chem. Phys., 126, 144307 (2007).