2E13

含 Fe, Co, Ni ラジカルにおける High-spin/Low-spin 状態の電子構造と物性

(広島大院理・産総研^a、NECナノエレ研^b、産総研^c、アドバンスソフト・東大生研^d)

○平野恒夫^a、友成六美^b、長嶋雲兵^c、田中 皓^d

[要旨]

FeH,¹⁾ FeCO, CoH,²⁾ CoCN,³⁾ NiCNにおける電子構造を多配置のab Initio分子軌道法で調べたところ、これらのラジカルのHigh-spin/Low-spin状態の電子構造は、 $3d_0$ と 4s軌道からなる 2 個の混成軌道への電子の分布の違いとして記述されるので、これらのラジカルでLow-spin状態が安定になる原因は、動的な電子相関によることが分かった。また、遷移金属-配位子間結合のイオン性、結合の強さ(結合距離、振動数)などが、動的な電子相関の効果として理解できることが分かった。

[計算方法]

計算はいずれもstate-averaged CASSCFで求めた自然軌道(NO)を基に、多配置のSDCI+Davidson correction Q(MR-SDCI+Q)で行った。FeH¹⁾のFeの基底関数はKoga-NoroらのGTOを、FeCO, CoCN,³⁾NiCNのFe、CoおよびNiにはRoos ANOを、CoH²⁾のCoとHにはSTOを用いた。FeHとCoHの計算にはALCHEMY IIを,FeCO, CoCN, NiCNの計算にはMOLPRO2002を用いた。FeHとCoHはMR-SDCI+Qに加えて、MRCPA(4)の計算も行った。FeCO, CoCN, NiCNでは、Cowan-Griffinの方法で相対論のエネルギー補正 (E_{rel}) を行った。またNOのエネルギーはNOによるFock様Matrixの対角項をもって代用した。

[結果]

同じ全角運動量で指定されるHigh-spin とLow-spinの電子状態の違い(CoHで言え

Fig. 1 MR-SDCI NOs of CoH

Fig. 2 CASSCF NOs of CoCN

図 1 および図 2 に CoH および CoCN の場合の MR-SDCI または CASSCF での NO のエネルギーと、電子配置の様子を示す。CoH では 7σ と 8σ 、CoCN では 11σ と 12σ が、問題の σ 軌道である。これらの軌道がほぼ同じ高さにあれば High-spin、両者が離れていれば Low-spin になっていることが分かる。この下がった NO に 2 個電子が入る Low-spin 状態では、ほぼ同じ高さにある 2 個の NO に 1 個ずつ電子が配置される High-spin 状態に較べて、動的電子相関が大きいことが予想される。

表 1 のCoHの場合、および表 2 のCoCNの場合、いずれも静的電子相関のみのCASSCFでは、

High-spinの方がLow-spinより安定であるにも係わらず、動的電子相関を考慮したMR-SDCI+Qまたは、MR-SDCI+Q+ E_{rel} では、逆にLow-spinの方が安定になっている。この動的電子相関による安定化エネルギーは、CoHではHigh-spin状態にくらべてLow-spin状態の方が33.6 E_h だけ大きくなっている。CoCNでの差は47.9 E_h である。

動的電子相関が大きいということは、電子間 の動的な反発が大きいということであるから、 その結果より多くの電子が配位子の方へ移行 することになり(Mulliken電荷を参照)、金属 -配位子間の結合に関するイオン性が高くなる ため、基本的にはイオン結合である金属-配位 子間結合は静電引力の増加で強くなる。結果と して、金属-配位子間結合の結合距離は短くな り、その伸縮振動数は高くなる筈である。表1 のCoH、表 2のCoCNでは予想通りそうなって いる。FeHについても、かつて田中ら1)は、 Low-spinの方が動的電子相関が強く、電荷の移 行、結合の強さに関しても、まったく同様な傾 向にあることを報告している。 したがって、 今回の報告で扱った全ての分子に共通なこれ らの諸性質は、High-spin状態に較べてLow-spin 状態におけるより強い動的電子相関に起因す るものと結論できる。

Table 1 CoH

	Х³Ф	5Ф
CASSCF / mE _h	4.8	0.0
MRCPA(4)/ mE _h	0.0	28.8
∆(Dynamical Electron Correlation) / m <i>E</i> h	33.6	
Net Charge (Co)	+0.45	+0.12
Ionicity (Co-H)	>	
r _e (Co−H) / Å	1.510	1.632
ω_3 (Co-H) / cm ⁻¹	1925	1756

Table 2 CoCN

	$ ilde{X}^3 \Phi$	5Ф
CASSCF / mE _h	33.4	0.0
$MR\text{-}AQCC + E_{Rel} / mE_{h}$	0.0	14.4
Δ(Dynamical Electron Correlation) / m <i>E</i> h	47.9	
Mulliken Charge (Co)	+0.89	+0.63
Ionicity (Co-C)	>	
<i>r</i> _e (Co-C) / Å	1.854	1.997
ω_3 (Co-C) / cm ⁻¹	544	426

¹⁾ K. Tanaka, M. Sekiya, and M. Yoshimine, J. Chem Phys., 115, 4558 (2001).

²⁾ M. Tomonari, R. Okuda, U. Nagashima, K. Tanaka, and T. Hirano, J. Chem. Phys., 126, 144307 (2007).

³⁾ T. Hirano, R. Okuda, U. Nagashima, P. Jensen, J. Chem. Phys., 127, 014303 (2007).