Elongation 法による巨大系の計算-DNA の導電性解析

(九大院・総理工) 青木百合子、折本裕一、Gu FengLong

【序】 高分子の重合反応をシミュレーションしながら超効率 的かつ超高精度で電子状態計算ができるよう開発してきた Elongation法を *ab initio*法のレベルで完成させた。本方法に、 原子・分子のレベルでの機能性高分子材料の分子設計のための 導電性、磁性、非線形光学現象等に関する量子化学的機能・物 性解析方法を組み合わせ、機能性高分子の分子設計統合システ ムの構築を目指している。今回は、本方法を DNA に適用し、局 所状態密度から導電性について議論を行う。

【方法】 Elongation 法とは、小さなオリゴマーを出発クラス ターとして、高分子の重合反応を追跡するようにしてセグメン トを順次付加させながら、高分子鎖の電子状態を求めていく方 法である。本方法では、クラスター側の分子軌道を付加するセ グメントから離れた局在化軌道(Frozen LMO)とセグメントに近

い局在化軌道(Active LMO)に分け、セグメントは、Active LMO とのみ相互作用させる。よって、高分子鎖にセグメ ントを付加させる度に、高分子鎖側の反応末端と付加す るセグメントの間の局所的な相互作用のみを取り扱う ため、全系をまともに扱う従来の計算に比べて、極めて 効率よく電子状態を求めることができる。Frozen LMO は、セグメントとの相互作用がある閾値以下になったら

レベル		HF-ELG.	HE-ELG	17	相関効果
	Normal HF-ELG.	AO-Cut/ qfmm	構造 最適化	TD-HF MP2 CI	
				α	β.γ
半経験	0		0	0	0
RHF	0	0	0	0	進行中
UHF	0	0	0	/	進行中
ROHF	0	0	0		進行中
DFT	0	進行中	0	/	

計算から外すようにしているため(AO-Cut 法)、計算精度を落とすことなく、正確にかつ効率的 に高分子鎖の電子状態を合成していくことができる。しかも遠距離クーロン相互作用をきちんと 評価しているので、極めて高精度で計算できること、どのようなランダム系に対しても適用可能 であることが特徴である。半経験的(AM1, PM3, MND0法)および非経験的分子軌道法のレベルで RHF, UHF, ROHF 法全てに対して本方法を確立し、AO-Cut 法の導入による Linear SCF Scaling 法、エネ ルギー勾配法による構造最適化法などの組み込みは完了し、本年7月に GAMESS にて公開された。 さらに密度汎関数法、電子相関効果の導入について、引き続き展開させているところである。

【応用】 本方法は、種々の共役高分子系やσ結合高分子系、開設高分子系、三重螺旋コラーゲン10(Pro-Pro-Gly)₃などに適用し、従来法との全エネルギーの誤差は、~10⁻⁹a.u./atomとなり、ほぼ完全な一致を示すことを確認している。さらに巨大生体高分子であるDNAに適用するための準備として、G-C塩基対のみからなるB-Poly(dG)・Poly(dC)DNAモデルについて既にElongation法によって計算を行った。次ページの表からわかるように誤差は10⁻⁸a.u./atomとほぼ完全な精度で効率よくDNAの計算ができることがわかった。この結果は、1ユニットが伸長方向と垂直な平

面上に広がったDNAにも本計算方 法が超高精度で適用可能である ことを裏付けるものである。

さらに、本方法では各セグメン ト上に局在化した領域軌道が得 られるため、それぞれの領域軌道 を基底とした固有値問題を部分 的に解くことにより、全系におけ る局所状態密度(LDOS)を計算す ることができる。右下図には従来 法(黒点線)と本方法(赤線)に よる特定の場所における LDOS を 示すが、両者の一致はほぼ完全で ある。本モデル DNA においては、

グアニン部分における HOMO-LUMO ギャップが糖 やリン酸鎖の部分に比べて小さく、G-C塩基 対を Through Space 的に伝導している可能性を 示唆している。さらに大きな基底関数による高 速演算に向けて改良中であり、DNA の塩基配列 データと生体機能関連情報、蛋白質のアミノ酸 配列、立体構造、機能データを体系的に解析す るための機能設計プログラムを構築し、電子論 に基づくミクロな視点での新規機能性バイオ ポリマーの設計に役立てる予定である。

【参考文献】

 A. Imamura, Y. Aoki, and K. Maekawa, J. Chem. Phys., 95, 5419-5431 (1991).
 Y. Aoki and A. Imamura, J. Chem. Phys., 97, 8432-8440 (1992).
 Y. Aoki, S. Suhai, and A. Imamura, J. Chem. Phys., 101, 10808-10823 (1994).
 F. L. Gu, Y. Aoki, A. Imamura, D. M. Bishop, and B. Kirtman, Mol. Phys., 101, 1487-1494 (2003).
 S. Ohnishi, F. L. Gu, K. Naka, A. Imamura, B. Kirtman, and Y. Aoki, J. Phys. Chem. A, 108, 8478-8484 (2004).
 F. L. Gu, Y. Aoki, J. Korchowiec, A. Imamura, and B. Kirtman, J. Chem. Phys., 121, 10385-10391 (2004).
 J. Korchowiec, F. L. Gu, A. Imamura, B. Kirtman, and Y.

B-Poly(dG) Poly(dC) DNA / RHF/STO-3G

11.11					
Number of	Number of	Number of	E(elongation)	E(elongation)	Error per atom
G-C Pair	atoms	basis functions	[in au]	-E(conv.) [in au]	[in au]
5	329	1,189	-13571.23009	7.01E-08	2.13E-10
6	394	1,426	-16284.96403	1.30E-06	3.29E-09
7	459	1,663	-18998.69799	3.21E-06	7.00E-09
8	524	1,900	-21712.43193	5.95E-06	1.14E-08
9	589	2,137	-24426.16584	9.12E-06	1.55E-08
10	654	2,374	-27139.89970	1.24E-05	1.90E-08
11	719	2,611	-29853.63353	1.58E-05	2.20E-08
12	784	2,848	-32567.36733	1.96E-05	2.50E-08
13	849	3,085	-35281.10113	2.26E-05	2.66E-08
14	914	3,322	-37994.83493	2.74E-05	3.00E-08
15	979	3,559	-40708.56875	Now computing E(conv.)	
16	1,044	3,796	-43422.30257		
17	1,109	4,033	-46136.03641		
18	1,174	4,270	-48849.77024		
19	1,239	4,507	-51563.50408		
20	1,304	4,744	-54277.23791		

Aoki, Int. J. Quantum Chem., 102, 785-794 (2005).
8) J. Korchowiec, F. L. Gu, and Y. Aoki, Int. J. Quantum Chem., 105, 875-882 (2005).
9) M. Makowski, J. Korchowiecc, F. L. Gu, and Y. Aoki, J. Comp. Chem., 27(13), 1603-1619 (2006).
10) Y. Orimoto, F. L. Gu, A. Imamura, and Y. Aoki, *J. Chem. Phys.*, 126, 215104, 1-7 (2007).
11) S. Ohnishi, Y. Orimoto, F. L. Gu, and Y. Aoki, *J. Chem. Phys.* In press (2007).

【英文総説】

Elongation Method for Polymers and its Application to Nonlinear Optics, in Atoms, Molecules and Clusters in Electric F ields: Theoretical Approaches to the Calculation of Electric Polarizabilities, edited by G. Maroulis, Imperial College Press, F. L. Gu, A. Imamura, and Y. Aoki, Imperial College Press, Vol. 1, Page 97-177, 2006.