1P144

強レーザー場中での N₂および O₂分子の光電子スペクトル

(東北大・多元研¹、Tata Institute of Fundamental Research²) 〇奥西みさき¹、嶋田浩三¹、Prüemper Georg¹、Mathur Deepak^{1,2}、上田潔¹

【序】強いレーザー場中におかれた原子・分子は光子場との相互作用により容易にイオン化 を起こす。光電子分光法はこの種の強光子場中での原子・分子のイオン化過程の研究におい て極めて有力な実験手法であるが、従来の研究はその対象がほぼ希ガス原子に限られており、 分子の詳細な光電子測定の例は非常に限られている¹⁻³。そこで、本研究では、フェムト秒レ ーザー(800nm パルス幅 100fsec)を用いて強レーザー場中(~10¹⁴ W cm⁻²)での2原子分子 (N₂, 0₂)の光電子スペクトルを幅広いエネルギー領域で測定し、これらを希ガス原子の光電 子スペクトルと比較することで強レーザー場中でのイオン化過程における分子効果について の探索を行った

【実験】光電子測定には長さ268 mm の飛行時間(TOF)型電子エネルギー分析装置を用いて行 い、飛行時間から電子の運動エネルギー分布を測定した。再生増幅型フェムト秒チタンサフ ァイアレーザーシステムから出力した波長800 nm のレーザー光(パルス時間幅100fsec、繰 り返し周波数1kHz)を焦点距離60 mm のレンズで超高真空チェンバー内に集光し分子をイオ ン化した。レーザーの偏光は、(TOF 軸に平行な)直線偏光および円偏光にして実験を行った。

【結果と考察】直線偏光および円偏光のレーザー光を光源として測定した、N2分子および(比

較のための)Ar 原子の光 電子スペクトルの一例を 図1に示す。直線偏光と円 偏光のレーザー光強度は 両定の電場強度がほぼし での電場強度がほぼ した。ここでN2分子はほぼし さのイオン化エネルギー を持つので原子極限では クトルを示すものと予想 される。一方、O2分子お よびXe 原子もほぼ等しい

図1 直線偏光および円偏光の光を用いて測定した (1)N₂分子および (2) Ar 原子の光電子スペクトル (γは Keldysh パラメータ)

イオン化エネルギーを持つことから、同様にして測定した O_2 分子および Xe 原子の光電子ス ペクトルを図 2 に示す。ここで Up は電子が光子場から受け取る平均のエネルギー (ponderomotive energy)である。図に示すように、直線偏光で測定した光電子スペクトルは 電子の運動エネルギー(Ekin)の増加とともに急激に減少し(Ekin<2~3Up)、エネルギーが 2~3Up を超えると傾きが急に緩やかになり、 $10U_p$ 付近でほぼ完全にゼロに近づく。低エネルギーの 領域(Ekin<2~3Up)で測定される電子は光子場による直接イオン化により放出されたものであ るのに対し、後者の領域(2~3Up < Ekin < $10U_p$)では最初に放出された電子がレーザー電場によ り分子に再衝突・再散乱された後放出された電子によるものと考えられている 4.5。実際、再 衝突が不可能な円偏光の光によるイオン化では再衝突領域は観測されない。

図1から N₂分子と Ar 原子の光電子スペクトル は再散乱領域の形状を除 き強度・形状ともに非常 に類似している。これは N₂分子のイオン化過程 が原子に類似したイオン 化過程を経ていることを 示唆している。Ar 原子の Ekin~3Up付近に見られる 光電子吸収過程(n:整数)が 丁度イオン化限界付近に ー致する場合に現れるも

図 2 直線偏光および円偏光の光を用いて測定した(1)O₂ 分子および (2)Xe 原子の光電子スペクトル

ので、channel-closing 共鳴と呼ばれ⁶、原子の場合に特に顕著に現れるものと考えられる。 一方、図2より O₂ 分子の光電子スペクトルは Xe に比べて強度が 1 桁近く小さく、特に $E_{kin} < 1 \sim 1.5 U_p$ の低エネルギー領域と再散乱領域の強度が極めて小さいことが判る。低エネル ギー領域での光電子強度の低下はイオン化に主に関与する O₂ 分子の最外殻軌道が反対称軌 道 π_g であるために 2 つの等価な O 原子から散乱される電子の散乱波が干渉効果によって打ち 消し合うためと考えられている 7。

[1] M. J. DeWitt and R. J. Levis, Phys. Rev. Lett. 81, 5101 (1998).

[2] E. E. B. Campbell *et al.*, Phys. Rev. Lett. 84, 2128 (2000).

[3] F. Grasbon et al., Phys. Rev. A 63, 041402 (2001).

[4] G. G. Paulus et al., Phys. Rev. Lett. 72, 2851 (1994).

[5] N. B. Delone and V. P. Krainov, Physics-Uspekhi 41, 469 (1998) [Usp. Fiz. Nauk 168, 531 (1998)].

[6] G. G. Paulus et al., Phys. Rev. A 64, 021401 (2001).

[7] F. Grasbon et al., Phys. Rev. A 63, 041402 (2001).