1P105

気体電子回折による n-ブチルアルデヒドオキシムの分子内部回転ポテンシャル

(上智大院理工*,静岡大理**) 〇久世信彦*,中島明那*,金田典子*,武藤里美*,高橋幸徳*, 酒泉武志*,大橋修*,飯島欣哉**

【序】

n-ブチルアルデヒドオキシム(CH₃CH₂CH₂CH=NOH)は C=N 二重結合に関して(E)型異性体と (Z)型異性体が存在し、さらに 2 つの C-C 単結合まわりの分子内部回転により様々な立体配座が 考えられる。我々はこれまでマイクロ波分光法(MW)により、(E)型と(Z)型異性体でそれぞれ2つ の構造異性体を観測し、そのうち 3 つの分子定数を決定した[1,2]。一方(Z)型異性体に関しては 気体電子回折(GED)のデータが観測されており、その解析により Z-1 と Z-4(図 1 参照)が存在す ることが報告されている[3]。さらに回転定数と回折データの併用解析を試みたが、データフィット の向上には至らなかった。これはデータ解析に小振幅振動モデルを採用していることに問題がある と考えられる。そこで本研究では C-C 結合まわりの 2 次元大振幅振動(2DLA)を考慮し、回折デー タから分子内部回転ポテンシャルを決定することを試みた。

図1 (2)型 ルブチルアルデヒドオキシムの構造モデル

【実験と解析】

試料は n-ブチルアルデヒドと塩酸ヒドロキシルアミンから 合成し,精製して実験に使用した。気体電子回折データは 以前静岡大学で測定されたものを再解析した。回折写真の 撮影は加速電圧 40 kV のもと、332 K の試料温度で 2 種のノズル距離を用いて行った。観測した回折パターンか ら得られた分子散乱強度を図 2 に示す。解析はこの分子 散乱強度に対する最小二乗解析により行った。IR スペク トルの解析から得られた力の定数の値を用いて、振動の平 均振幅・短縮補正項、回転定数の調和振動補正の計算を 行った。

n-ブチルアルデヒドオキシムの二面角 ϕ_1 , ϕ_2 (図 3)に関する ポテンシャル曲面を HF/6-31G(d,p)計算で求め、この結 果を参考にして、解析に用いるポテンシャル関数を仮定した。 2 次元大振幅振動を考慮したデータ解析では二面角 ϕ_1 , ϕ_2 の 値をそれぞれ 30°づつ変化させた構造モデルを計 144 個 設定した。

【結果と考察】

C-C 単結合まわりの 2 次元ポテンシャル関数

$$V = \frac{V_1}{2}(1 - \cos\theta_1) + \frac{V_2}{2}(1 - \cos 2\theta_1) + \frac{V_3}{2}(1 - \cos 3\theta_1) + \frac{V_1}{2}(1 - \cos 3\theta_1) + \frac{V_1}{2}(1 - \cos 2\theta_2) + \frac{V_2}{2}(1 - \cos 2\theta_2) + \frac{$$

のパラメーターを表1のように決定した。 そのときのポテンシャル曲面が図4である。 また気体電子回折のデータ解析結果を表2 と図5に示す。表2に回折データと回転定数 の併用解析(GED+MW)と、2次元大振幅振 動による解析結果(GED(2DLA))をまとめた。 *R*-factorの値より、2次元大振幅振動による 解析結果が実験値をより再現していることが わかる。このことは動径分布関数の3-5 Å の領域の残差が小さくなっていることでも分か る。

図 4 ポテンシャル曲面 (上:HF/6-31G(*d*,*p*)計算,下:GED(2DLA))

Table 1 Potential parameters (kJ/mol)

	obs.		calc.	
V 1	-0.57	(243)	10.89	
V 2	-1.71	(172)	-5.82	
V ₃	8.83	(194)	15.97	
V 1'	10.43	(269)	15.82	
V 2'	-4.51	(151)	-8.22	
$():3\sigma$				

Table 2 Structural parameters

of <i>n</i> -butyraldehyde oxime"							
	GED+M	GED+MW (Z-4)		GED(2DLA)			
	ref ^{b)}	ref ^{b)}		this work			
r _g (C1-C2)	1.540	(9)	1.535	(8)			
r _g (C2-C3)	1.543	(9)	1.538	(8)			
r _g (C3-C4)	1.497	(17)	1.502	(8)			
r _g (C4=N5)	1.270	(5)	1.269	(12)			
<i>r</i> g(N5-06)	1.408	(6)	1.405	(14)			
r _g (C1-H7)	1.101	(5)	1.098	(9)			
∠ _a C1C2C3	112.4	(11)	113.4	(8)			
∠ _a C2C3C4	113.6	(9)	112.5	(9)			
∠ _a C3C4N5	126.5	(13)	125.6	(2)			
∠ _a C4N5O6	113.0	(12)	113.4	(2)			
<i>ø</i> 1	64	(1)	-				
<i>ø</i> 2	-164	(1)	-				
¢CCNO(fix)	0		0				
¢CNOH(fix)	180		180				
X(%) ^{c)}	91	(12)	-				
R-factor	0.088	•	0.066				

a) *r* : Å, ∠:°, φ:°, ():1σ b) Kaneda (2005)

c) Population of Z-4 conformer.

【参考文献】

[1] <u>N. Kuze</u>, E. Suzuki, M. Siratani, T. Amako, T. Okuda, G. Kondo, T. Kuriyama, M. Matsubayashi, T. Sakaizumi, and O. Ohashi, *J. Mol. Spectrosc.*, **191**, 1(1998).

[2] 尼子, 松林, 真鍋, 米森, 二宗, 久世, 酒泉, 大橋, 日本化学会第83春季年会(2003), 3J5-33.

[3] <u>N. Kuze</u>, T. Okuda, K. Tateishi, R. Suzuki, Y. Takahashi, S. Muto, T. Sakaizumi, O. Ohashi, and K. Iijima *19th Austin Symposium on Molecular Structure* (Austin, Texas, USA; February-March 2002).

⁽上:併用解析,下:2次元大振幅振動解析)