CCSD calculations on C₁₈ and C₂₂ carbon clusters

Sundaram Arulmozhiraja* and Takahisa Ohno Computational Materials Science Center, National Institute for Materials Science, Tsukuba, Ibaraki

Carbon clusters C_n attract interest in connection with the formation of fullerenes, nanotubes, and conducting polymers. These carbon chains play an important role in the interstellar chemistry of carbon-rich evolved stars as stable species or chemical intermediates. However, our understanding of the structural and electronic properties of carbon clusters, especially smaller-sized ones, is far from satisfactory.

Among the C_n clusters, C_{4n+2} carbon rings attracted both experimentalists and theoreticians because they exhibit competing many-body effects of Huckel aromaticity, second-order Jahn-Teller, and Peierls instability at large sizes. This leads to possible ground state structures with aromatic, bond angle, or bond length alternated geometry. Because of the involvement of these many-body effects, high-level calculations are very much important to obtain reliable structure and electronic properties of these clusters. Many studies were made in the past to know the structure of these clusters; however, the results obtained even for the first two members of the C_{4n+2} family, C_6 and C_{10} , are not consistent. Recently it has been concluded that the structure of C_6 is cumulenic D_{3h} ring and the ground state structures of the other members of C_{4n+2} clusters remains. We carried out the present study to make the concrete conclusion regarding the ground state structures of C_{14} , C_{18} , and C_{22} rings.

At first, structures were optimized by using different density functionals including the popular B3LYP functional with different basis sets. The nature of the optimized structures was analyzed by using frequency calculations. Finally we used CCSD theory for the optimization of the ground state structures. Four different isomers (example, Fig. 1 for C_{18}) of C_{14} , C_{18} , and C_{22} rings were considered for the present study.

Fig. 1. CCSD/D95 optimized structures of four ring isomers of C_{18} . (1) D_{18h} cumulenic, (2) D_{9h} cumulenic (3) D_{9h} acetylenic, and (4) C_{9h} acetylenic.

The results derived for C_{18} using different density functionals with cc-pVTZ basis set were presented in Table 1. Basically all the four ring structures have the same geometrical parameters and the energies obtained for all the structures are almost same. Hence, the density functional results clearly support that the ground state structure of C_{18} has D_{18h} symmetry (1).

Isomer	B3LYP	PBEPBE	PBE1PBE
$D_{18h}(1)$	R = 1.2766 Å	R = 1.2849 Å	R = 1.2757 Å
	$\theta = 160.0^{\circ}$	$\theta = 160.0^{\circ}$	$\theta = 160.0^{\circ}$
D_{9h} Cumulenic (2)	R = 1.2765 Å	R = 1.2849 Å	R = 1.2756 Å
	$\theta_1 = 159.98^{\circ}$	$\theta_1 = 159.98^\circ$	$\theta_1 = 159.98^{\circ}$
	$\theta_2 = 160.02^{\circ}$	$\theta_2 = 160.02^\circ$	$\theta_2 = 160.02^{\circ}$
D_{9h} Acetylenic (3)	$R_1 = 1.2765 \text{ Å}$	$R_1 = 1.2849 \text{ Å}$	R_1 = 1.2757 Å
	$R_2 = 1.2768 \text{ Å}$	$R_2 = 1.2849 \text{ Å}$	R_2 = 1.2757 Å
	$\theta = 160.0^{\circ}$	$\theta = 160.0^{\circ}$	θ = 160.0°
C _{9h} (4)	$R_{1} = 1.2769 \text{ Å}$ $R_{2} = 1.2759 \text{ Å}$ $\theta_{1} = 159.97^{\circ}$ $\theta_{2} = 160.03^{\circ}$	R_1 = 1.2846 Å R_2 = 1.2848 Å θ_1 = 159.99° θ_2 = 160.01°	R_1 = 1.2756 Å R_2 = 1.2758 Å θ_1 = 159.97° θ_2 = 160.03°

Table 1. C_{18} structures using cc-pVTZ basis set with different density functionals.

CCSD optimized structures of four ring isomers of C_{18} were given in Fig. 1 and their geometrical parameters were given in Table 2. Table shows some interesting results.

Isomer	D95	D95(d)
$D_{18h}(1)$	R = 1.3087 Å $\theta = 160.0^{\circ}$ $\Delta E = 40.56$	R = 1.2944 Å $\theta = 160.0^{\circ}$ $\Delta E = 37.16$
<i>D</i> _{9h} Cumulenic (2)	R = 1.3080 Å $\theta_1 = 157.52^{\circ}$ $\theta_2 = 162.48^{\circ}$ $\Delta E = 36.47$	
<i>D</i> _{9<i>h</i>} Acetylenic (3)	$R_1 = 1.2477 \text{ Å}$ $R_2 = 1.3976 \text{ Å}$ $\theta = 160.0^{\circ}$ $\Delta E = 1.72$	R_1 = 1.2336 Å R_2 = 1.3833 Å θ = 160.0° ΔE = 2.75
C _{9h} (4)	$R_{1} = 1.2486 \text{ Å}$ $R_{2} = 1.3956 \text{ Å}$ $\theta_{1} = 156.80^{\circ}$ $\theta_{2} = 163.20^{\circ}$ $\Delta E = 0.00$	$R_{1} = 1.2347 \text{ Å}$ $R_{2} = 1.3807 \text{ Å}$ $\theta_{1} = 155.21^{\circ}$ $\theta_{2} = 164.79^{\circ}$ $\Delta E = 0.00$

Table 2. C_{18} structures and relative energies (ΔE in kcal/mol) using CCSD theory.

Contrary to the results obtained using density functionals in the present study and to those obtained using MP2 calculations available in the literature, the CCSD calculations conclude that the ground state structure of C_{18} is clearly C_{9h} acetylenic (4). Relative energies calculated at CCSD theory show that the C_{9h} structure (4) of C_{18} is around 40 kcal/mol more stable than the DFT/MP2-predicted D_{18h} cumulenic structure (1). The present study overcomes the earlier contradictory conclusions and provides the much-needed reliable structure for C₁₈. All these results and the results obtained for the C_{10} , C_{14} , and C_{22} carbon clusters will be presented and discussed in the present talk.