1C15

PYP のN末端領域における構造変化ダイナミクス

(京大院理¹・奈良先端大²・阪大院理³) ○星原悠司¹・今元泰¹・片岡幹雄²・ 徳永史生³・木村佳文¹・寺嶋正秀¹

【序】Photoactive yellow protein (PYP)は、紅色光合成細菌より単離された、水溶性の光受容蛋 白質である。p-クマル酸を発色団に持ち、この細菌が青色光から逃げるための光センサーの 役目をしていると考えられている。この蛋白質の光反応では、光励起により発色団が異性化 し、まず基底状態 pG は吸収帯が長波長シフトした中間体 pR₁、pR₂となる。続いて、~170 µs の時定数でプロトン移動を伴いながら吸収帯が短波長シフトした中間体 pB'になる。その後 pB'は~1 ms の時定数で pB 状態へと変化し、最終的に中間体 pB は基底状態 pG へと戻る[1]。 この光サイクル反応中に誘起される構造変化について、これまで様々な手法を用いて研究さ れており、それらの結果によると pB'と pB の中間体はそれぞれ、発色団のプロトン移動に伴 う発色団周辺の構造変化状態とN 末端を含む PYP 全体の構造変化状態であると解釈されてき た[2]。しかしながら、実際は構造変化を時間分解で直接捉えることのできる有用な実験手法 がほとんどなかったため、PYP の構造変化、中でもとりわけシグナル伝達において重要とさ れる N 末端領域の構造変化がどんな時間スケールで起こっているのかについては、今のとこ ろ明らかにされていない。そこで本研究では、過渡回折格子(Transient Grating, TG) 法を用 いて拡散係数の時間発展を観察することにより、拡散係数変化の観点から N 末端領域での構 造変化ダイナミクスを明らかにした。

【実験】測定に用いた PYP 溶液は 10 mM Tris-HCl バッファー (pH = 8.0) に溶解し、0.5 mM PMSF (phenylmethanesulfonyl fluoride)を加えて作製した。また BCP (bromocresol purple)を熱参 照試料として用いた。各試料について、励起波長における吸光度は 0.4 - 0.7 に調整した。TG 測定では、波長 465 nm のパルスレーザーを励起光、633 nm の連続光をプローブ光として信 号を観測した。

【結果と考察】以前の研究により、拡散係数とN末端領域での構造とが相関があることが示されている[3]。このことを用いて、拡散係数Dの時間変化より、構造変化の速度を求めることを試みた。Dの時間変化を見積もるためには、幅広い格子波数 (q^2)条件でのTG信号を解析しなければならない。Figure 1 (a)は $q^2 = 3x10^{11} \text{ m}^2$ で測定した PYP のTG 信号である。初めのピーク信号はpR₂からpBへの二成分の反応を表しており、T = 293 K でそれぞれ $k_1^{-1} = 170 \mu s$ と $k_2^{-1} = 1 \text{ ms}$ の時定数を持っている[4]。最後のピーク信号はpGとpBの拡散過程を示しており、中間体の拡散係数 D_{pB} が基底状態の D_{pG} と異なる値を持つために生じるものである ($D_{pG} = 1.35x10^{-10} \text{ m}^2 \text{s}^{-1}$)。よって、熱減衰後のTG 信号は以下の式で表すことができる。

$$I_{TG}(t) = \alpha \{ \delta n_{th} \exp(-D_{th}q^2 t) + \delta n_1 \exp(-k_1 t) + \delta n_2 \exp(-k_2 t) - \delta n_{pG} \exp(-D_{pG}q^2 t) + \delta n_{pB} \exp(-D_{pB}q^2 t) \}^2$$

Figure 1 に、様々な *q*² 条件において観測された PYP の TG 信号を示す。ここでは簡単のため に熱減衰成分後の信号のみ示してあるが、各信号はそれぞれ熱減衰成分の強度で規格化して ある。まず、拡散のピーク信号の強度が *q*²の増加に伴って減少していることに気づく。これ は、pG と中間体の拡散係数の差が時間とともに変化していることを示している。当然、基底 状態 pG の拡散係数は時間変化しないので、この強度変化は中間体の拡散係数が時間とともに 変化していることを示している。

そこで我々は、様々な q²で観測された信号の変化を説明するため、以下に示すような二つの反応スキームを考えて解析を行った。

反応スキーム1 : $pR_2(D_{pG}) \xrightarrow{k_1} pB'(D_{pB}) \xrightarrow{k_2} pB(D_{pB})$

反応スキーム2 : $pR_2(D_{pG}) \xrightarrow{k_1} pB'(D_{pG}) \xrightarrow{k_2} pB(D_{pB})$

スキーム 1 とスキーム 2 はそれぞれ、pR₂-pB'過程と pB'-pB 過程で拡散係数変化が起こって いるとしたものであり、各々のスキームに関して TG 信号に寄与する屈折率変化の時間依存 性を見積もった。まず初めに、小さい波数 $q^2 = 3x10^{11} \text{ m}^{-2}$ で測定した信号を、この遅い時間 領域では拡散係数の時間変化が無視できると仮定したときのフィットによって、各反応種の 屈折率変化 δn_{pG} 、 δn_{pB2} 、 δn_{pB} を求めた。続いて、得られたパラメータを用いて、他の大 きな q^2 での信号を拡散係数の時間変化を表す式で再現することを試みたところ、反応スキー ム 1 に基づいた計算が、観測された信号を非常によく再現することが分かった。このことは PYP の拡散係数がスキーム 1 に従って変化することを示している。

これまで PYP の光サイクル反応において、pR₂-pB'過程で発色団のプロトン化に伴う局所的 な変化を示し、pB'-pB 過程で蛋白質構造全体の変化が誘起されると考えられてきた。しかし、 信号伝達で重要とされる N 末端の構造は中間体 pB'の生成とともに変化していることが、今 回の結果から新たに明らかになった。詳細な解析や議論については発表で述べる。

【参考文献】

[1] K. Takeshita and M. Terazima et al., Biophys. Journal 2002, 83, 1567-1577.

[2] A. Xie and W. D. Hoff et al., Biochemistry 2001, 40, 1510-1517.

[3] J. S. Khan and M. Terazima et al., *Biophys. Journal* 2006, 90, 3686-3693.

[4] K. Takeshita and M. Terazima et al., Biochemistry 2002, 41, 3037-3048.

Fig. 1 TG signals (black lines) of PYP measured at q^2 of (a) 3×10^{11} , (b) 1.64×10^{12} , (c) 5×10^{12} , (d) 7.3×10^{12} , and (e) 1×10^{13} m⁻². The calculated signals based on Scheme 1 (time constant = 170 µs) are shown by the gray lines.

